Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.141
Filtrar
1.
Plant Mol Biol ; 114(3): 50, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656412

RESUMEN

Amylose biosynthesis is strictly associated with granule-bound starch synthase I (GBSSI) encoded by the Waxy gene. Mutagenesis of single bases in the Waxy gene, which induced by CRISPR/Cas9 genome editing, caused absence of intact GBSSI protein in grain of the edited line. The amylose and amylopectin contents of waxy mutants were zero and 31.73%, while those in the wild type were 33.50% and 39.00%, respectively. The absence of GBSSI protein led to increase in soluble sugar content to 37.30% compared with only 10.0% in the wild type. Sucrose and ß-glucan, were 39.16% and 35.40% higher in waxy mutants than in the wild type, respectively. Transcriptome analysis identified differences between the wild type and waxy mutants that could partly explain the reduction in amylose and amylopectin contents and the increase in soluble sugar, sucrose and ß-glucan contents. This waxy flour, which showed lower final viscosity and setback, and higher breakdown, could provide more option for food processing.


Asunto(s)
Amilosa , Edición Génica , Hordeum , Proteínas de Plantas , Almidón Sintasa , Amilosa/metabolismo , Hordeum/genética , Hordeum/metabolismo , Edición Génica/métodos , Almidón Sintasa/genética , Almidón Sintasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas , Amilopectina/metabolismo , Sacarosa/metabolismo , Azúcares/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , beta-Glucanos/metabolismo , Plantas Modificadas Genéticamente , Solubilidad
2.
Methods Mol Biol ; 2788: 227-241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656517

RESUMEN

The Coffea spp. plant is a significant crop in Latin America, Africa, and Asia, and recent advances in genomics and transcriptomics have opened possibilities for studying candidate genes and introducing new desirable traits through genetic engineering. While stable transformation of coffee plants has been reported using various techniques, it is a time-consuming and laborious process. To overcome this, transient transformation methods have been developed, which avoid the limitations of stable transformation. This chapter describes an ex vitro protocol for transient expression using A. tumefaciens-mediated infiltration of coffee leaves, which could be used to produce coffee plants expressing desirable traits against biotic and abiotic stresses, genes controlling biochemical and physiological traits, as well as for gene editing through CRISPR/Cas9.


Asunto(s)
Agrobacterium tumefaciens , Coffea , Edición Génica , Hojas de la Planta , Plantas Modificadas Genéticamente , Transgenes , Coffea/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Agrobacterium tumefaciens/genética , Edición Génica/métodos , Transformación Genética , Sistemas CRISPR-Cas , Regulación de la Expresión Génica de las Plantas
3.
Methods Mol Biol ; 2788: 273-285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656520

RESUMEN

Epigenetic editing, also known as EpiEdit, offers an exciting way to control gene expression without altering the DNA sequence. In this study, we evaluate the application of EpiEdit to plant promoters, specifically the MLO (mildew locus o) gene promoter. We use a modified CRISPR-(d)Cas9 system, in which the nuclease-deficient Cas9 (dCas9) is fused to an epigenetic modifier, to experimentally demonstrate the utility of this tool for optimizing epigenetic engineering of a plant promoter prior to in vivo plant epigenome editing. Guide RNAs are used to deliver the dCas9-epigenetic modifier fusion protein to the target gene sequence, where it induces modification of MLO gene expression. We perform preliminary experiments using a plant promoter cloned into the luciferase reporter system, which is transfected into a human system and analyzed using the dual-luciferase reporter assay. The results suggest that this approach may be useful in the early stages of plant epigenome editing, as it can aid in the selection of appropriate modifications to the plant promoter prior to conducting in vivo experiments under plant system conditions. Overall, the results demonstrate the potential of CRISPR (d)Cas9-based EpiEdit for precise and controlled regulation of gene expression.


Asunto(s)
Sistemas CRISPR-Cas , Epigénesis Genética , Edición Génica , Genes Reporteros , Luciferasas , Regiones Promotoras Genéticas , Humanos , Edición Génica/métodos , Luciferasas/genética , Luciferasas/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , Células HEK293
4.
Methods Mol Biol ; 2788: 209-226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656516

RESUMEN

Coffea arabica L. is a crucial crop globally, but its genetic homogeneity leads to its susceptibility to diseases and pests like the coffee berry borer (CBB). Chemical and cultural control methods are difficult due to the majority of the CBB life cycle taking place inside coffee beans. One potential solution is the use of the gene cyt1Aa from Bacillus thuringiensis as a biological insecticide. To validate candidate genes against CBB, a simple, rapid, and efficient transient expression system is necessary. This study uses cell suspensions as a platform for expressing the cyt1Aa gene in the coffee genome (C. arabica L. var. Catuaí) to control CBB. The Agrobacterium tumefaciens strain GV3101::pMP90 containing the bar and cyt1Aa genes are used to genetically transform embryogenic cell suspensions. PCR amplification of the cyt1Aa gene is observed 2, 5, and 7 weeks after infection. This chapter describes a protocol that can be used for the development of resistant varieties against biotic and abiotic stresses and CRISPR/Cas9-mediated genome editing.


Asunto(s)
Agrobacterium tumefaciens , Coffea , Coffea/genética , Agrobacterium tumefaciens/genética , Sistemas CRISPR-Cas , Plantas Modificadas Genéticamente/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacillus thuringiensis/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Edición Génica/métodos , Proteínas Hemolisinas/genética , Regulación de la Expresión Génica de las Plantas , Transformación Genética , Café/genética
5.
Methods Mol Biol ; 2788: 317-335, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656523

RESUMEN

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas 9 (CRISPR-associated protein 9) is a robust DNA-encoded, RNA-mediated sequence-specific nuclease system widely used for genome editing of various plants. Although there are many reports on the assembly of gRNAs and plant transformation, there is no single resource for the complete gene editing methodology in tomato. This chapter provides a comprehensive protocol for designing gRNAs, their assembly into the vector, plant transformation, and final mutant analysis in tomato.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Vectores Genéticos , ARN Guía de Sistemas CRISPR-Cas , Solanum lycopersicum , Solanum lycopersicum/genética , Edición Génica/métodos , ARN Guía de Sistemas CRISPR-Cas/genética , Vectores Genéticos/genética , Genoma de Planta , Plantas Modificadas Genéticamente/genética , Transformación Genética
6.
Methods Mol Biol ; 2788: 257-271, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656519

RESUMEN

Tissue culture optimization protocols limit indica rice breeding. Such a challenge is vital because emergent techniques still rely on tissue culture methods and could allow the breeding of new varieties with higher production and toleration of adverse environmental effects caused by climate change. Genome editing technology, using CRISPR/Cas9, is a fast and precise method for accelerated plant breeding. It limited its use in indica subspecies because of the recalcitrant response to in vitro culture methods. This chapter describes a protocol for CRISPR/Cas9 editing in indica subspecies, specifically in the CR-5272 variety derived from parental lines IR-822, using Agrobacterium tumefaciens and biolistic transformation.


Asunto(s)
Agrobacterium tumefaciens , Sistemas CRISPR-Cas , Edición Génica , Oryza , Oryza/genética , Edición Génica/métodos , Agrobacterium tumefaciens/genética , Genoma de Planta , Fitomejoramiento/métodos , Transformación Genética , Plantas Modificadas Genéticamente/genética , Biolística/métodos
7.
Methods Mol Biol ; 2788: 287-294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656521

RESUMEN

CRISPR/Cas9 stands as a revolutionary and versatile gene editing technology. At its core, the Cas9 DNA endonuclease is guided with precision by a specifically designed single-guide RNA (gRNA). This guidance system facilitates the introduction of double-stranded breaks (DSBs) within the DNA. Subsequent imprecise repairs, mainly through the non-homologous end-joining (NHEJ) pathway, yield insertions or deletions, resulting in frameshift mutations. These mutations are instrumental in achieving the successful knockout of the target gene. In this chapter, we describe all necessary steps to create and design a gRNA for a gene knockout to a target gene before to transfer it to a target plant.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Técnicas de Inactivación de Genes , ARN Guía de Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas/genética , Técnicas de Inactivación de Genes/métodos , Edición Génica/métodos , Simulación por Computador , Reparación del ADN por Unión de Extremidades/genética
8.
Methods Mol Biol ; 2788: 295-316, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656522

RESUMEN

This protocol outlines the construction of a plant transformation plasmid to express both the Cas9 nuclease and individual guide RNA (gRNA), facilitating the induction of double-stranded breaks (DSBs) in DNA and subsequent imprecise repair via the non-homologous end-joining (NHEJ) pathway. The gRNA expression cassettes are assembled from three components. First, the Medicago truncatula U6.6 (MtU6) promoter (352 bp) and scaffold (83 bp) sequences are amplified from a pUC-based plasmid. Additionally, a third fragment, corresponding to the target sequence, is synthesized as an oligonucleotide. The three gRNA expression fragments are then loosely assembled in a ligation-free cloning reaction and used as a template for an additional PCR step to amplify a single gRNA expression construct, ready for assembly into the transformation vector. The benefits of this design include cost efficiency, as subsequent cloning reactions only require 59 oligonucleotides and standard cloning reagents. Researchers engaged in CRISPR/Cas9-mediated genome editing in plants will find this protocol a clear and resource-efficient approach to create transformation plasmids for their experiments.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Vectores Genéticos , ARN Guía de Sistemas CRISPR-Cas , Vectores Genéticos/genética , ARN Guía de Sistemas CRISPR-Cas/genética , Técnicas de Inactivación de Genes/métodos , Plásmidos/genética , Medicago truncatula/genética , Edición Génica/métodos , Plantas Modificadas Genéticamente/genética , Clonación Molecular/métodos , Regiones Promotoras Genéticas/genética , Reparación del ADN por Unión de Extremidades/genética , Transformación Genética
9.
Methods Mol Biol ; 2788: 337-354, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656524

RESUMEN

Modern genome editing tools particularly CRISPR/Cas9 have revolutionized plant genome manipulation for engineering resilience against changing climatic conditions, disease infestation, as well as functional genomic studies. CRISPR-mediated genome editing allows for editing at a single as well as multiple locations in the genome simultaneously, making it an effective tool for polyploid species too. However, still, its applications are limited to the model crops only. Extending it to crop plants will help improve field crops against the changing climates more rapidly and precisely. Here we describe the protocol for editing the genome of a field crop Brassica juncea (mustard), an allotetraploid and important oilseed crop of the Indo-Pak Subcontinent region. This protocol is based on the Agrobacterium-mediated transformation for the delivery of CRISPR components into the plant genome using cotyledon as explants. We elaborate on steps for recovering genome-edited knockouts, for validation of the edits, as well as recovering the transgene-free edited plants through a commonly used segregating approach.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma de Planta , Planta de la Mostaza , Plantas Modificadas Genéticamente , Edición Génica/métodos , Planta de la Mostaza/genética , Plantas Modificadas Genéticamente/genética , Agrobacterium/genética , Transformación Genética
10.
Methods Mol Biol ; 2788: 355-372, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656525

RESUMEN

The CRISPR/Cas9 system is a revolutionary technology for genome editing that allows for precise and efficient modifications of DNA sequences. The system is composed of two main components, the Cas9 enzyme and a guide RNA (gRNA). The gRNA is designed to specifically target a desired DNA sequence, while the Cas9 enzyme acts as molecular scissors to cut the DNA at that specific location. The cell then repairs the digested DNA, either through nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in either indels or precise modifications of DNA sequences with broad implications in biotechnology, agriculture, and medicine. This chapter provides a practical approach for utilizing CRISPR/Cas9 in precise genome editing, including identifying the target gene sequence, designing gRNA and protein (Cas9), and delivering the CRISPR components to target cells.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , ARN Guía de Sistemas CRISPR-Cas , Edición Génica/métodos , ARN Guía de Sistemas CRISPR-Cas/genética , Humanos , Reparación del ADN por Unión de Extremidades , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética
11.
Nat Commun ; 15(1): 3464, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658536

RESUMEN

TnpBs encoded by the IS200/IS605 family transposon are among the most abundant prokaryotic proteins from which type V CRISPR-Cas nucleases may have evolved. Since bacterial TnpBs can be programmed for RNA-guided dsDNA cleavage in the presence of a transposon-adjacent motif (TAM), these nucleases hold immense promise for genome editing. However, the activity and targeting specificity of TnpB in homology-directed gene editing remain unknown. Here we report that a thermophilic archaeal TnpB enables efficient gene editing in the natural host. Interestingly, the TnpB has different TAM requirements for eliciting cell death and for facilitating gene editing. By systematically characterizing TAM variants, we reveal that the TnpB recognizes a broad range of TAM sequences for gene editing including those that do not elicit apparent cell death. Importantly, TnpB shows a very high targeting specificity on targets flanked by a weak TAM. Taking advantage of this feature, we successfully leverage TnpB for efficient single-nucleotide editing with templated repair. The use of different weak TAM sequences not only facilitates more flexible gene editing with increased cell survival, but also greatly expands targeting scopes, and this strategy is probably applicable to diverse CRISPR-Cas systems.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Elementos Transponibles de ADN/genética , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Transposasas/metabolismo , Transposasas/genética
12.
Nat Commun ; 15(1): 3478, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658578

RESUMEN

The expansion of the CRISPR-Cas toolbox is highly needed to accelerate the development of therapies for genetic diseases. Here, through the interrogation of a massively expanded repository of metagenome-assembled genomes, mostly from human microbiomes, we uncover a large variety (n = 17,173) of type II CRISPR-Cas loci. Among these we identify CoCas9, a strongly active and high-fidelity nuclease with reduced molecular size (1004 amino acids) isolated from an uncultivated Collinsella species. CoCas9 is efficiently co-delivered with its sgRNA through adeno associated viral (AAV) vectors, obtaining efficient in vivo editing in the mouse retina. With this study we uncover a collection of previously uncharacterized Cas9 nucleases, including CoCas9, which enriches the genome editing toolbox.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Microbiota , Edición Génica/métodos , Humanos , Animales , Ratones , Microbiota/genética , Dependovirus/genética , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Retina/metabolismo , Clostridiales/genética , Clostridiales/enzimología , Células HEK293 , Vectores Genéticos/metabolismo , Vectores Genéticos/genética
13.
Hepatol Commun ; 8(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38668730

RESUMEN

BACKGROUND: We previously demonstrated the successful use of in vivo CRISPR gene editing to delete 4-hydroxyphenylpyruvate dioxygenase (HPD) to rescue mice deficient in fumarylacetoacetate hydrolase (FAH), a disorder known as hereditary tyrosinemia type 1 (HT1). The aim of this study was to develop an ex vivo gene-editing protocol and apply it as a cell therapy for HT1. METHODS: We isolated hepatocytes from wild-type (C57BL/6J) and Fah-/- mice and then used an optimized electroporation protocol to deliver Hpd-targeting CRISPR-Cas9 ribonucleoproteins into hepatocytes. Next, hepatocytes were transiently incubated in cytokine recovery media formulated to block apoptosis, followed by splenic injection into recipient Fah-/- mice. RESULTS: We observed robust engraftment and expansion of transplanted gene-edited hepatocytes from wild-type donors in the livers of recipient mice when transient incubation with our cytokine recovery media was used after electroporation and negligible engraftment without the media (mean: 46.8% and 0.83%, respectively; p=0.0025). Thus, the cytokine recovery medium was critical to our electroporation protocol. When hepatocytes from Fah-/- mice were used as donors for transplantation, we observed 35% and 28% engraftment for Hpd-Cas9 ribonucleoproteins and Cas9 mRNA, respectively. Tyrosine, phenylalanine, and biochemical markers of liver injury normalized in both Hpd-targeting Cas9 ribonucleoprotein and mRNA groups independent of induced inhibition of Hpd through nitisinone, indicating correction of disease indicators in Fah-/- mice. CONCLUSIONS: The successful liver cell therapy for HT1 validates our protocol and, despite the known growth advantage of HT1, showcases ex vivo gene editing using electroporation in combination with liver cell therapy to cure a disease model. These advancements underscore the potential impacts of electroporation combined with transplantation as a cell therapy.


Asunto(s)
Edición Génica , Hepatocitos , Hidrolasas , Ratones Endogámicos C57BL , Tirosinemias , Animales , Tirosinemias/terapia , Tirosinemias/genética , Edición Génica/métodos , Ratones , Hepatocitos/trasplante , Hepatocitos/metabolismo , Hidrolasas/genética , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Sistemas CRISPR-Cas , Electroporación/métodos , Ratones Noqueados , 4-Hidroxifenilpiruvato Dioxigenasa/genética , Modelos Animales de Enfermedad , Ciclohexanonas , Nitrobenzoatos
14.
Zebrafish ; 21(2): 162-170, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38621214

RESUMEN

We have developed a one-credit semester-long research experience for undergraduate students that involves the use of CRISPR/Cas9 to edit genes in zebrafish. The course is available to students at all stages of their undergraduate training and can be taken up to four times. Students select a gene of interest to edit as the basis of their semester-long project. To select a gene, exploration of developmental processes and human disease is encouraged. As part of the course, students use basic bioinformatic tools, design guide RNAs, inject zebrafish embryos, and analyze both the molecular consequences of gene editing and phenotypic outcomes. Over the 10 years we have offered the course, enrollment has grown from less than 10 students to more than 60 students per semester. Each year, we choose a different gene editing strategy to explore based on recent publications of gene editing methodologies. These have included making CRISPants, targeted integrations, and large gene deletions. In this study, we present how we structure the course and our assessment of the course over the past 3 years.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Animales , Edición Génica/métodos , Pez Cebra/genética , ARN Guía de Sistemas CRISPR-Cas , Estudiantes
15.
Methods Mol Biol ; 2782: 189-193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38622403

RESUMEN

Monocytes play important and diverse roles in both homeostatic and inflammatory immune responses. The CRISPR-Cas9 system in lentiviral vectors has been widely used to manipulate specific genes of immortal monocyte cell lines to study monocyte functions. However, human primary monocytes are refractory to this method with low gene knockout (KO) efficiency. In this chapter, we developed an in vitro gene-editing procedure for primary human monocytes with a consistent and high-gene KO efficiency via a ribonucleoprotein (RNP) complex consisting of Cas9 protein and single-guide RNA (sgRNA). This method can be adapted to study the functions of targeted signaling molecules involved in modulating monocyte polarization in primary human monocytes.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas , Monocitos/metabolismo , Proteína 9 Asociada a CRISPR/genética
16.
Methods Mol Biol ; 2782: 195-208, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38622404

RESUMEN

As part of the adaptive immune system, T cells are critical to maintain immune homeostasis. T cells provide protective immunity by killing infected cells and combatting cancerous cells. To do so, T cells produce and secrete effector molecules, such as granzymes, perforin, and cytokines such as tumor necrosis factor α and interferon γ. However, in immune suppressive environments, such as tumors, T cells gradually lose the capacity to perform their effector function. One way T cell effector function can be enhanced is through genetic engineering with tools such as clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9). This protocol explains in a step-by-step fashion how to perform a controlled electroporation-based CRISPR experiment to enhance human T cell effector function. Of note, these steps are suitable for CRISPR-mediated genome editing in T cells in general and can thus also be used to study proteins of interest that do not influence T cell effector function.


Asunto(s)
Sistemas CRISPR-Cas , Linfocitos T , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Ingeniería Genética/métodos , Citocinas/genética
17.
Biotechnol J ; 19(4): e2300691, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622798

RESUMEN

CRISPR/Cas9 technology, combined with somatic cell nuclear transplantation (SCNT), represents the primary approach to generating gene-edited pigs. The inefficiency in acquiring gene-edited nuclear donors is attributed to low editing and delivery efficiency, both closely linked to the selection of CRISPR/Cas9 forms. However, there is currently no direct method to evaluate the efficiency of CRISPR/Cas9 editing in porcine genomes. A platform based on fluorescence reporting signals and micropattern arrays was developed in this study, to visually assess the efficiency of gene editing. The optimal specifications for culturing porcine cells, determined by the quantity and state of cells grown on micropattern arrays, were a diameter of 200 µm and a spacing of 150 µm. By visualizing the area of fluorescence loss and measuring the gray value of the micropattern arrays, it was quickly determined that the mRNA form targeting porcine cells exhibited the highest editing efficiency compared to DNA and Ribonucleoprotein (RNP) forms of CRISPR/Cas9. Subsequently, four homozygotes of the ß4GalNT2 gene knockout were successfully obtained through the mRNA form, laying the groundwork for the subsequent generation of gene-edited pigs. This platform facilitates a quick, simple, and effective evaluation of gene knockout efficiency. Additionally, it holds significant potential for swiftly testing novel gene editing tools, assessing delivery methods, and tailoring evaluation platforms for various cell types.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Porcinos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Técnicas de Inactivación de Genes , Genoma , ARN Mensajero/genética
18.
CRISPR J ; 7(2): 88-99, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38564197

RESUMEN

Rhodnius prolixus is currently the model vector of choice for studying Chagas disease transmission, a debilitating disease caused by Trypanosoma cruzi parasites. However, transgenesis and gene editing protocols to advance the field are still lacking. Here, we tested protocols for the maternal delivery of CRISPR-Cas9 (clustered regularly spaced palindromic repeats/Cas-9 associated) elements to developing R. prolixus oocytes and strategies for the identification of insertions and deletions (indels) in target loci of resulting gene-edited generation zero (G0) nymphs. We demonstrate successful gene editing of the eye color markers Rp-scarlet and Rp-white, and the cuticle color marker Rp-yellow, with highest effectiveness obtained using Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) with the ovary-targeting BtKV ligand. These results provide proof of concepts for generating somatic mutations in R. prolixus and potentially for generating germ line-edited lines in triatomines, laying the foundation for gene editing protocols that could lead to the development of novel control strategies for vectors of Chagas disease.


Asunto(s)
Enfermedad de Chagas , Rhodnius , Animales , Femenino , Edición Génica/métodos , Rhodnius/genética , Rhodnius/parasitología , Sistemas CRISPR-Cas , Insectos Vectores/parasitología , Enfermedad de Chagas/genética , Enfermedad de Chagas/parasitología
19.
Yi Chuan ; 46(3): 219-231, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38632100

RESUMEN

CRISPR/Cas9 gene editing technology, as a highly efficient genome editing method, has been extensively employed in the realm of animal husbandry for genetic improvement. With its remarkable efficiency and precision, this technology has revolutionized the field of animal husbandry. Currently, CRISPR/Cas9-based gene knockout, gene knock-in and gene modification techniques are widely employed to achieve precise enhancements in crucial production traits of livestock and poultry species. In this review, we summarize the operational principle and development history of CRISPR/Cas9 technology. Additionally, we highlight the research advancements utilizing this technology in muscle growth and development, fiber growth, milk quality composition, disease resistance breeding, and animal welfare within the livestock and poultry sectors. Our aim is to provide a more comprehensive understanding of the application of CRISPR/Cas9 technology in gene editing for livestock and poultry.


Asunto(s)
Sistemas CRISPR-Cas , Ganado , Animales , Ganado/genética , Aves de Corral/genética , Edición Génica/métodos , Técnicas de Sustitución del Gen
20.
J Vis Exp ; (205)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38557598

RESUMEN

Genome editing technology is widely used to produce genetically modified animals, including rats. Cytoplasmic or pronuclear injection of DNA repair templates and CRISPR-Cas reagents is the most common delivery method into embryos. However, this type of micromanipulation necessitates access to specialized equipment, is laborious, and requires a certain level of technical skill. Moreover, microinjection techniques often result in lower embryo survival due to the mechanical stress on the embryo. In this protocol, we developed an optimized method to deliver large DNA repair templates to work in conjunction with CRISPR-Cas9 genome editing without the need for microinjection. This protocol combines AAV-mediated DNA delivery of single-stranded DNA donor templates along with the delivery of CRISPR-Cas9 ribonucleoprotein (RNP) by electroporation to modify 2-cell embryos. Using this novel strategy, we have successfully produced targeted knock-in rat models carrying insertion of DNA sequences from 1.2 to 3.0 kb in size with efficiencies between 42% and 90%.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ratas , Animales , Edición Génica/métodos , Dependovirus/genética , Electroporación/métodos , Cigoto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...